
A fast marching level set method for monotonically advancing fronts

J. A. Sethian 

doi:10.1073/pnas.93.4.1591 
 1996;93;1591-1595 PNAS

 This information is current as of October 2006.

 www.pnas.org#otherarticles
This article has been cited by other articles: 

 E-mail Alerts
. click herebox at the top right corner of the article or

Receive free email alerts when new articles cite this article - sign up in the

 Rights & Permissions
 www.pnas.org/misc/rightperm.shtml

To reproduce this article in part (figures, tables) or in entirety, see: 

 Reprints
 www.pnas.org/misc/reprints.shtml

To order reprints, see: 

 Notes:

http://www.pnas.org#otherarticles
http://www.pnas.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=pnas;93/4/1591&return_type=article&return_url=http%3A%2F%2Fwww.pnas.org%2Fcgi%2Freprint%2F93%2F4%2F1591.pdf
http://www.pnas.org/misc/rightperm.shtml
http://www.pnas.org/misc/reprints.shtml


Proc. Natl. Acad. Sci. USA
Vol. 93, pp. 1591-1595, February 1996
Applied Mathematics

A fast marching level set method for monotonically
advancing fronts
J. A. SETHIAN
Department of Mathematics, University of California, Berkeley, CA 94720

Communicated by Alexandre J. Chorin, University of California, Berkeley, CA, November 16, 1995 (received for review October 20, 1995)

ABSTRACT A fast marching level set method is presented
for monotonically advancing fronts, which leads to an ex-
tremely fast scheme for solving the Eikonal equation. Level set
methods are numerical techniques for computing the position
of propagating fronts. They rely on an initial value partial
differential equation for a propagating level set function and
use techniques borrowed from hyperbolic conservation laws.
Topological changes, corner and cusp development, and ac-
curate determination of geometric properties such as curva-
ture and normal direction are naturally obtained in this
setting. This paper describes a particular case of such methods
for interfaces whose speed depends only on local position. The
technique works by coupling work on entropy conditions for
interface motion, the theory of viscosity solutions for Hamil-
ton-Jacobi equations, and fast adaptive narrow band level set
methods. The technique is applicable to a variety of problems,
including shape-from-shading problems, lithographic devel-
opment calculations in microchip manufacturing, and arrival
time problems in control theory.

This paper describes and tests a numerical algorithm for
tracking the evolution of interfaces. The technique applies in
the case of a front propagating normal to itself with a speed F
that depends only on position and is always either positive or
negative. The applications of such a technique include some
global illumination problems and problems from control the-
ory, as well as surface advancement in lithographic develop-
ment and isotropic etching and deposition in the manufactur-
ing of microelectronic structures. This scheme was first de-
scribed in ref. 1; this paper presents the details of this scheme
and shows results and timings.

Background

Consider a boundary, either a curve in two dimensions or a
surface in three dimensions, separating one region from
another, and imagine that this curve/surface moves in its
normal direction with a known speed function F. The goal is
to track the motion of this interface as it evolves. We are only
concerned with the motion of the interface in its normal direction
and shall ignore tangential motion.
As shown in refs. 2, 3, and 4, a propagating interface can

develop corners and discontinuities as it evolves, which require
the introduction of a weak solution in order to proceed. The
correct weak solution comes from enforcing an entropy con-
dition for the propagating interface, similar to the one in gas
dynamics. Furthermore, this entropy-satisfying weak solution
is the one obtained by considering the limit of smooth solutions
for the problem in which curvature plays a regularizing role.
As an example, consider the initial cosine curve propagating

with speed F = 1 shown in Fig. 1. As the front moves, a corner
forms in the propagating front, which corresponds to a shock
in the slope, and a weak solution must be developed beyond
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this point. If the motion of each individual point is continued,
the result is the swallowtail solution shown in Fig. 1A, which
is multiple-valued and does not correspond to a clear interface
separating two regions. Instead, an appropriate weak solution
is obtained by considering the associated smooth flow ob-
tained by adding curvature K to the speed law-that is, letting
F = 1 - K (see Fig. 1B). The limit of these smooth solutions
as E goes to zero produces the weak solution shown in Fig. 1C;
this is the same solution obtained by enforcing an entropy
condition, similar to the one for a scalar hyperbolic conser-
vation law, which selects the envelope obtained by Huygens
principle as the correct solution (see ref. 2). This weak solution
corresponds to a decrease in total variation of the propagating
front and is irreversible (3). For details, see ref. 3.
As a numerical technique, this suggests using the technology

from hyperbolic conservation laws to solve the equations of
motion, as described in ref. 5. This leads to the "level set"
formulation introduced in ref. 6, which we now describe.

Level Set Methods. Given an initial position for an interface
F, where F is a closed curve in R2, and a speed function F, which
gives the speed of F in its normal direction, the level set method
takes the perspective of viewing F as the zero level set of a
function +(x, t = 0) from R2 to R That is, let +(x, t = 0) = ±d,
where d is the distance from x to F, and the plus (minus) sign
is chosen if the point x is outside (inside) the initial hypersur-
face F. Then, by the chain rule, an evolution equation for the
interface may be produced (4, 6)-namely,

ot + FIV4I = 0,
+(x, t = 0) = given.

[1]
[2]

This is an initial value partial differential equation in one
higher dimension than the original problem. In Fig. 2 (taken
from ref. 7), we show the outward propagation of an initial
curve and the accompanying motion of the level set function
4).
There are several advantages to this level set perspective:
1. Although +(x, t) remains a function, the level surface
= 0 corresponding to the propagating hypersurface may

change topology, as well as form sharp corners as ( evolves
(see ref. 6).

2. Second, a discrete grid can be used together with finite
differences to devise a numerical scheme to approximate the
solution. Care must taken to adequately account for the spatial
derivatives in the gradient.

3. Third, intrinsic geometric properties of the front are
easily determined from the level set function 4b. The normal
vector is given by n- = V4O/IV4I and the curvature of each level
set is K = V.V4/jV4j.

4. Finally, the formulation is unchanged for propagating
interfaces in three dimensions.

Since its introduction in ref. 6, the above level set approach
has been used in a wide collection of problems involving
moving interfaces. Some of these applications include the
generation of minimal surfaces (8), singularities and geodesics
in moving curves and surfaces in ref. 9, flame propagation
(10, 11), fluid interfaces (12, 13), shape reconstruction (14,
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Swallowtail(F = 1.0) F = 1. - 0.25r.

FIG. 1. Cosine curve propagating with unit speed.

15), as well as etching, deposition, and lithography calcula-
tions in refs. 16 and 17. Extensions of the basic technique
include fast methods in ref. 18, level set techniques for
multiple fluid interfaces and triple point junctions in ref. 19,
and grid generation in ref. 7. The fundamental Eulerian
perspective presented by this approach has since been
adopted in many theoretical analyses of mean curvature flow
(in particular, see refs. 20 and 21).
Numerical Approximation. As mentioned above, a careful

approximation to the gradient in the level set equation (Eq. 1)
is required to produce the correct weak solution. One of the
simplest such schemes is given in ref. 6-namely,

in+1 = At(max(D11 X(4, 0)2

+ min(Diix+, 0)2 max(D,Y1o#, 0)2

+ min(Di Y4, 0)2)1/2, [3]

where the speed is F = 1 and difference operator notation is
employed; for example, Dtjx4. = (t+i+,j - Oi,j)/(Ax). The
crucial point in this (any such appropriate) numerical scheme
is the correct direction of the upwinding and treatment of sonic
points.
Narrow Band Methods. The above technique relys on

computing the evolution of all the level sets, not simply the
zero level set corresponding to the front itself. As such, it is a
computationally expensive technique, since an extra dimen-
sion has been added to the problem.

As an alternative, an efficient modification is to perform
work only in a neighborhood of the zero level set; this is known
as the "narrow band approach." In this case, the operation
count in three dimensions for N3 grid points drops to O(kN2),
where k is the number of cells in the width of the narrow band,
providing a significant cost reduction. This narrow band
method method was introduced in ref. 8, used in recovering
shapes from images in ref. 14, and analyzed extensively in ref.
18.
The basic idea is to tag grid points as either "alive," "land

mines," or "far away," depending on whether they are inside
the band, near its boundary, or outside the band, respectively
(see Fig. 3). Thus, work is performed only on the alive points,
and the band is reconstructed once land mine points are
reached. An extreme one-cell version of this leads to the fast
marching level set method presented below.

A Fast Marching Level Set Method

We now discuss in detail the fast marching level set method
introduced in ref. 1. Consider the special case of a front moving
with speed F = F(x,y, z), F > 0 (the case where F is everywhere
negative is also allowed). We then have a monotonically
advancing front whose level set equation is of the form

4t + F(x,y, z)|VOI = 0 [4]

4(x, t = 0) = r. [5]

y
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FIG. 2. Propagating circle. [Reprinted with permission from ref. 7 (Springer).]

Entropy Solution(F = 1.0)
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FIG. 3. Pointer array tags alive, narrow band, and far away points.

Imagine the two-dimensional case in which the interface is a
propagating curve, and suppose we graph the evolving zero
level set above the xy plane. That is, let T(x, y) be the time at
which the curve crosses the point (x,y). The surface T(x,y) then
satisfies the equation

IVTIF = 1. [6]
Eq. 6 simply says that the gradient of arrival time surface is
inversely proportional to the speed of the front.

This is a form of the well-known Eikonal equation, and the
recasting of the problem into a stationary one is common in a
variety of applications. The notion of viscosity solutions is
intimately connected to this equation; a central idea, discussed
in detail in ref. 22, is that the use of monotone, consistent
schemes will lead to schemes that select the correct viscous
limit of the partial differential equation, as was done in the
level set scheme in ref. 6. We refer the interested reader to
large literature on this subject, including relevant theory in
refs. 22-25 and numerical algorithms in refs. 26-29. Roughly
speaking, two possible ways to view these solution techniques
are either iteration toward the solution or direct construction
of the stationary solution surface T(x, y). We now discuss a
technique that relies on the level set methodology and narrow
band work described above.
Approximation Scheme. For this discussion, we limit our-

selves to a two-dimensional problem inside a square from [0,
1] x [0, 1] and imagine that the initial front is along the line
y = 0; furthermore, we assume that we are given a positive
speed function F(x, y) that is periodic in x. Thus, the front
propagates upward off the initial line. Using our approxima-
tion to the gradient, we are then looking for a solution in the
unit box to the equation

[max(D11 XT, 0)2 + min(D+xT, 0)2
Y~~~~~~~~~~~~~~

+ max(D..YT, 0)2 + min(D1' T, 0)2)] F2' [7]

where T(x, 0) = 0.

Since Eq. 7 is in essence a quadratic equation for the value
at each grid point (assuming the others are held fixed), one
typically iterates until convergence by solving the equation at
each grid point, selecting the largest possible value as the
solution in accordance with obtaining the correct viscosity
solution. An iterative algorithm for computing the solution to
this problem was introduced by Rouy and Tourin (29); there,
a different approximation to the gradient was chosen, which is
less diffusive, namely,

[max(max(D11 XT, 0), - min(Dj7XT, 0))2

+ max(max(D,JYT, 0), - min(DitYT, 0))2] = 1/Ft. [8]

For details of this approach, see ref. 29. This approximation to
the gradient will be used in the fast marching level set method.
A Fast Marching Level Set Method. The key to constructing

a fast marching algorithm is the observation that the upwind
difference structure of Eq. 8 means that information propa-
gates "one way"-that is, from smaller values of T to larger

values. Hence, our algorithm rests on "solving" Eq. 8 by
building the solution outward from the smallest time value T.
The idea is to sweep the front ahead in an upwind fashion by
considering a set of points in narrow band around the existing
front and to march this narrow band forward, freezing the
values of existing points and bringing new ones into the narrow
band structure. The key is in the selection of which grid point
in the narrow band to update. The technique is easiest to
explain algorithmically (see Fig. 4, taken from ref. 1). We
imagine that we want to propagate a front upward through an
N by N grid with speed Fij giving the speed in the normal
direction at each grid point. Here the set of grid points j = 1
correspond to the y axis, and we assume that Fij > 0.
1. Initialize

(a) (Alive points: shaded points): LetA be the set of all grid
points {i, j = 1}; set Ti,1 = 0.0 for all points in A.

(b) (Narrow band points: circles): Let Narrow Band be the
set of all grid points {i, j = 2}; set Ti,1 = dy/Fij for all
points in Narrow Band.

(c) (Far away points: rectangles): Let Far Away be the set
of all grid points {i,j > 2}; set Ti4 = o for all points in
Far Away.

2. Marching Forward
(a) Begin Loop: Let (imin,imin) be the point in Narrow Band

with the smallest value for T.
(b) Add the point (imin, jmin) to A; remove it from Narrow

Band.
(c) Tag as neighbors any points (min,- 1, min), (imin + 1,

1min), (min 1min - 1), (imin 1min + 1) that are either in
Narrow Band or Far Away. If the neighbor is in Far
Away, remove it from that list and add it to the set
Narrow Band.

(d) Recompute the values of T at all neighbors according
to Eq. 8, selecting the largest possible solution to the
quadratic equation.

(e) Return to top of Loop.
We take periodic boundary conditions where required.

Assuming for the moment that it takes no work to determine
the member of the narrow band with the smallest value of T,
the total work required to compute the solution at all grid
points is O(N2), where calculation is performed on an N by N
grid.
Why does the above algorithm work? Since we are always

locating the smallest value in the narrow band, its value for T
must be correct; other narrow band points or far away points
with larger T values cannot affect it. The process of recom-
puting the T values at neighboring points (that have not been
previously accepted) cannot yield a value smaller than any of
that at any of the accepted points, since the correct viscosity
solution is obtained by selecting the largest possible solution to
the quadratic equation. Thus, the algorithm marches the
solution outward, always selecting the narrow band grid point
with minimum trial value for T and readjusting neighbors.
Another way to look at this is that each minimum trial value
begins an application of Huygen's principle, and the expanding
wave front touches and updates all others.

O 0

O 0 0 0

- - 0 0
FIG. 4. Narrow band approach to marching level set method.
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FIG. 5. Matrix of neighboring values.

Proof That the Algorithm Constructs a Viable Solution

Here, it is shown that the above algorithm produces a solution
that everywhere satisfies the discrete version of the equation,
which is given by

[max(max(D-IXT, 0), - min(D7xT, 0))2 +

max(max(D-. YT, 0), - min(DJYT, 0))2] =f2 [9]

where fi = 1/Ft. A constructive proof is given. Since the
values of T(x, y, z) are built by marching forward from the
smallest value to the largest, one need only show that whenever
a "trial" value is converted into an alive value, none of the
recomputed neighbors obtain new values less than the ac-
cepted value. If this is true, then we will always be marching
ahead in time, and the thus the correct "upwind" nature of the
differencing will be respected. We shall prove our result in two
dimensions; the three-dimensional proof is the same.

Thus, consider the matrix of grid values given in Fig. 5. The
argument will follow the computation of the new value of T in
the center grid point to replace the value of ?, based on the
neighboring values. Assume, without loss of generality, that the
value A at the left grid point is the smallest of all trial values.
It is now shown that the value at the center grid point (called
Trecomputed-from-A) cannot be less thanA. This will prove that the
upwinding is respected and that there is no need to go back and
readjust previously set values. We shall consider the four cases
that (1) none of the neighbors B, C, or D are alive, (2) one of
these neighbors is alive, (3) two of the neighbors are alive, and
(4) all three of these neighbors are alive.*
Case 1:A, B, C, andD are trial; A is the smallest. In this case,

all of the neighbors around the center grid point are either trial
or set to Far Away. Since A is the smallest such value, we
convert that value to alive and recompute the value at the
center grid point. We now show that the recomputed value A
< Trecomputed-from-A ' A + f
1. Suppose A + f < min(B, D). Then Trecomputed-from-A = (A

+ f) is a solution to the problem, since only the difference
operator to the left grid point is nonzero. We are absorbing
the grid size Ax into the inverse speed function f

2. Suppose A + f . min(B, D). Then, without loss of gener-
ality, assume that B < D. We can solve the quadratic
equation

(Trecomputed-from-A - A)2 + (Trecomputed-from-A - B)2 = f2.
[10]

The discriminant is nonnegative when f . (B - A)/<,
which must be true since we assumed that A + f . B and
hencef . (B - A). Thus, a solution exists, and it is easy to
check that this solution must then be greater than or equal
to B and thus falls into the required range. Furthermore, we
see that T c A + f, since the second term on the left is
nonnegative.

Thus, we have shown that A S Trecomputed-from-A < A + f, and
therefore Trecomputed-from-A cannot be less than the just con-
verted value A.

This case will act as a template for the other cases.

*Recall that alive means that their T values are less than A. Here, we
are using the notation that the symbolA stands for both the grid point
and its T value.

Case 2: B is alive; A, C, and D are trial; A is the smallest of
the trial values. In this case, A has just been converted, since
it is the smallest of the trial values. It can be shown that the new
TrecomputedA has a new value still greater than A. At some
previous stage, when B was converted from trial to alive, the
values ofA, C, and D were all trial values and hence must have
been larger. Then this means that when B was converted from
trial to alive, we had the previous case above, and hence B <
Trecomputed-from-B - B + f; furthermore, since the value at the
center was not chosen as the smallest trial value, we must have
that A c B + f By the above case, we then have that B c A
< Trecomputed-from-A - B + f, and hence the recomputed value
cannot be less than the just converted value of A.

Case 3: C is alive; A, B, and D are trial; A is the smallest of
the trial values. In this case, due to the direction of the upwind
differencing, the value at C is the contributor in thex direction,
the acceptance ofA does not affect the recomputation, and the
case defaults into the first case above.
The remaining cases are all the same, since the differencing

takes the smallest values in each coordinate direction. The
proof in three dimensions is identical.

Finding the Smallest Value. The key to an efficient version
of the above technique lies in a fast way of locating the grid
point in the narrow band with the smallest value for T. We use
a variation on a heapsort algorithm with back pointers (see
refs. 12 and 30). In more detail, imagine that the list of narrow
band points is initially sorted in a heapsort so that the smallest
member can be easily located. We store the values of these
points in the heapsort, together with their indices, which give
their location in the grid structure. We keep a companion array
that points from the two-dimensional grid to the location of
that grid point in the heapsort array. Finding the smallest value
is easy. To find the neighbors of that point, we use the pointers
from the grid array to the heapsort structure. The values of the
neighbors are then recomputed, and then the results are
bubbled upward in the heapsort until they reach their correct
locations, at the same time readjusting the pointers in the grid
array. This results in an O(log N) algorithm for the total
amount of work, where N is the number of points in the narrow
band.

Arbitrary Initial Fronts. The above technique considered a
flat initial interface for which trial values at the narrow band
points could be easily initialized. Suppose we are given an
arbitrary closed curve or surface as the initial location of the
front. In this case, we use the original narrow band level set
method to initialize the problem. First, label all grid points as
far away and assign them T values of oo. Then, construct the
signed distance function in a one-grid cell wide band around
the initial hypersurface F. Propagate that surface both forward
and backward in time until a layer of grid points is

FIG. 6. Lithographic development on 50 x 50 x 50 grid.
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Table 1. Timings for development to T = 10 on a Sparc 10
workstation

Time to load Time to propa- Total
Grid size rate file, sec ate front, sec time, sec

50 x 50 x 50 0.1 0.7 0.8
100 x 100 x 100 1.2 8.2 9.4
150 x 150 x 150 3.9 37.8 41.7
200 x 200 x 200 9.0 80.0 89

crossed in each direction, computing the signed crossing times
as in ref. 7. Then collect the points with negative crossing times
as alive points with T value equal to the crossing time and the
points with positive crossing times as narrow band points with
Tvalue equal to the positive crossing times. Then begin the fast
marching algorithm.

Results

Simple Initial Front. As a first example, we use the above
algorithm to compute a lithographic development profile for
an evolving front. We start with a flat profile at height z = 1
in the unit cube centered at (0.5, 0.5, 0.5) and follow the
evolution of the interface downward with speed given by the
model Gaussian rate function

F(x, y, z) = e 64(r2)(cos2(12z) + 0.01), [11]

where r = (x - 0.5)2 + (y 0.5)2. This rate function F
corresponds to effect of standing waves, which change the
resist properties of the material and cause sharp undulations
and turns in the evolving profile. In Fig. 6, we show the profile
etched out by such an initial state; the calculation is carried out
until T = 10.

In Table 1, we give timings for a parameter study on a Sparc
10 workstation for the speed function F = e-64(r')(cos2(6z) +
0.01). We note that loading the file containing the model
Gaussian rate function F is a significant proportion of the total
compute time.

Deposition Problem

Next, we consider the case of simple isotropic deposition above
a trench, with corresponding speed function F = 1. Fig. 7 shows
a two-dimensional trench being filled in with a deposition

FIG. 7. Isotropic deposition above trench.

layer; note the sharp corner that develops when the entropy
condition is invoked.
There are a large number of applications of this fast

marching level set method, including problems in control
theory, etching/deposition/lithography, and global illumina-
tion. At the same time, the above technique can be extended,
with modification, to general convex speeds laws and, perhaps,
nonconvex speed functions. We shall report on these issues
elsewhere.
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